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Integrable Hamiltonian systems (IHS) are nowadays a rather
elaborated part of the dynamical theory of Hamiltonian systems. This
study is useful in many aspects, one of them is the understanding of
their structure for the purposes of the perturbation theory: an
integrable system is the starting point to understand the structure of
the perturbed system. Also the study of the related Liouville foliation
has its own value for the geometry. When one deals with a Hamiltonian
system of which is known as being integrable, one may distinguish
several aspects of its study. The primary aspect is about the local
structure of the system near some its simplest singular sets: equilibria,
periodic orbits and invariant tori. Main results in this direction are due
to contributions of Birkhoff , Moser, Rüssmann, Vey, Eliasson, Ito,
Zung, Miranda for analytic and C∞ systems. Some local results
concerning finitely smooth integrable systems are due to L-U.
Semi-local aspects consist in the study of a given IHS in some
neighborhoods of its singular sets saturated w.r.t. to the orbits of the
induced Poisson action. This was initiated by Lerman-Umanskiy
(1981) and a bit later Fomenko and continued in his school: Bolsinov,
Zung, Oshemkov, Kalashnikov, Matveev, and many others.
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Here the topic of bifurcations in IHS arises very naturally. First of all, it
is a common case when integrable systems are met in families, and all
members of the family are IHS. But the structure of integrable systems
themselves give rise to bifurcations. To explain this, recall that in
Hamiltonian systems singular orbits like periodic orbits, invariant tori
are met in families of different dimension in the phase space. For
instance, periodic orbits usually belong to 1-parameter families forming
2-dim submanifold (this is valid not only for an integrable system but for
any system with the first integral), invariant k-dimensional isotropic tori
usually belong to k-parameter families forming generically
2k-dimensional submanifolds. The most important property of an
integrable system is that near such submanifolds the system can be
reduced by means of some reduction procedure to the family of IHS of
the lesser dimension but depending on parameters. The experience of
different branches of the theory of dynamical systems, singularity
theory of smooth functions, etc., suggest: the more parameters a
system has the more degenerate singularity can be met in the family.
Below we consider only the case n = 3.
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Let a C∞-smooth 3D IHS (XH, F1, F2) be given. We assume that XH

has an one-parameter family of periodic trajectories γc being
one-dimensional orbits of the related Poisson action. Let m be a point
on some γc. The common reduction procedure gives us a family of
four-dimensional symplectic disks with reduced Hamiltonians with
singular points depending on one parameter. This is done as follows.
At m differentials dH, dF1, dF2 generate a 1-dim subspace in T∗mM.
Taking, if necessary, linear combinations of integrals one may suppose
dF2 6= 0 at m. One may choose near m symplectic coordinates
(x1, x2, x3, y1, y2, y3) in such a way that F2 = x3 in these coordinates
(Nekhoroshev) and m = (0, 0, 0, 0, 0, 0). Then, due to pair-wise
involution for integrals H, F2,, F1, F2, functions H, F1 in these
coordinates do not depend on y3. At m co-vectors dH and dF1 are
collinear to dF2, therefore differentials dH, dF1 vanish w.r.t. reduced
variables (x1, x2, y1, y2), one gets a one-parameter family of integrable
systems in two degrees of freedom with Hamiltonian H and additional
integral F1, the point m̂ (projection of m to the reduced space) is the
equilibrium for XH. The type of this point and its continuation in
parameter x3 depends on the type of singularity of the triple (H, F1, F2)
at m.Lev M. Lerman (UNN) 3D Hamiltonian Systems Bedlewo, July 14, 2015 5 / 38



Denote x = (x1, x2), y = (y1, y2). We assume that this singularity is not
too degenerate, namely
Assumption 1. Rank of 4× 5 matrix(
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∂y ) ∂

∂y(
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∂
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∂x(
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∂x ) ∂

∂y(
∂H
∂x )

)
(1)

is equal to 4. In this case, the set of 1-dim orbits near m indeed forms a
smooth 1-parameter family.
If, in addition, Hessian of H in variables (x, y) does not vanish at m̂,
then singularity at m̂ can be continued in parameter x3 = ε and one has
an isolated non-degenerate equilibrium for every ε. But such
one-parameter family can meet unavoidably degenerate singular
points without zero eigenvalues.
Another situation arises, if the Hessian of H is equal to zero at m but a
minor containing the column with derivatives in x3 in matrix (1) does
not vanish. Then for ε = 0 the equilibrium at m̂ does have at least one
double zero eigenvalue generically non-semisimple one.
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Now we enumerate changes of singular point types that can be met in
generic 1-parameter families of IHS in two degrees of freedom. They
are determined first by the transitions of eigenvalues and
corresponding Jordan forms at that value of the parameter when a
singular point of the vector field degenerates (critical value).
Generically, the following is possible

as a governing parameter varies, among four different imaginary
eigenvalues (elliptic singular point) two pairs becomes two
imaginary double non-semisimple ones, and then turn out into a
complex quadruple (usually such the bifurcation is called as the
Hamiltonian Hopf Bifurcation (Meer), if some coefficient in
nonlinear normal form does not vanish);
when changing a parameter, four different real eigenvalues
(saddle singular point) become two double non-semisimple real
nonzero eigenvalues and then turn out to be a complex quadruple;
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when changing a parameter, among four different imaginary
eigenvalues (again an elliptic singular point) one pair collides and
becomes double zero non-semisimple one, and then one gets two
imaginary eigenvalues and two reals (such a bifurcation is called
sometimes as the elliptic Hamiltonian Hopf Bifurcation (B-C-K-V),
if some coefficient in the nonlinear normal form does not vanish);
when changing a parameter among four different real eigenvalues
(saddle singular point) one pair becomes double non-semisimple
zero and then eigenvalues turn out to be a pair of reals and a pair
of imaginary eigenvalues (center-saddle singular point).

First two bifurcations are well studied, therefore we only briefly
describe results and pictures (see details and pictures in (Meer,AKN)
and codimension 2 case in (G-L) for the Hamiltonian Hopf bifurcation,
and (AKN,BCKV) for normally elliptic bifurcation). But the local study
shows the existence of cases when separatrix sets of the singular
points go out the neighborhood of the singular point, then one needs to
add semi-local description.
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If m is a point on a 2-dimensional invariant torus, then the reduction
procedure leads to the a family of 1 d.o.f. Hamiltonian systems
depending on two parameters (ε1, ε2) (values of two independent
integrals, say F1, F2). This means that such a family can generically
contain a system with a singular point of codimension 2, in this case it
can be either a degenerate elliptic point or degenerate saddle. Such a
point has as its linearization matrix the double zero eigenvalue with
2-dimensional Jordan box, zero coefficient in the normal form the third
order for the critical Hamiltonian and nonzero coefficient in the normal
form of the fourth order. This normal form with parameters ε1, ε2 is as
follows

H = a(ε1, ε2)x +
1
2

y2 +
b(ε1, ε2)

2
x3 +

c(ε1, ε2)

2
x4 + · · · ,

here a(0, 0) = b(0, 0) = 0, c(0, 0) 6= 0, D(a, b)/D(a(ε1, ε2)) 6= 0. Related
phase portraits are plotted in Figs.3-4 for both signs of c(0, 0).
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At the critical value of a governing parameter (say ε) a system has two
double pure imaginary eigenvalues ±iω both non semi-simple ones.
The related normal form (Sokol’sky, Meer) looks as follows

Hε =
1
2
(y2

1 + y2
2) + ω(x1y2 − x2y1)−

ν(ε)

2
(x2

1 + x2
2)+

(x2
1 + x2

2)[A(x2
1 + x2

2) + B(x1y2 − x2y1) + C(y2
1 + y2

2)]+∞∑
α1+α2+α3=3

hα1,α2,α3(x
2
1 + x2

2)
α1(x1y2 − x2y1)

α2(y2
1 + y2

2)
α3 ,

(2)

One assumes coefficient A do not vanish. The type of bifurcation
depends of the sign of A. For A positive the bifurcation is pure local, for
A negative it is semi-local. Bifurcation diagrams for both cases are
plotted in Fig.1 and related phase portraits of the reduced systems are
on Fig.2.
For the case A < 0 separatrix sets for the focus-focus and degenerate
elliptic point leave a neighborhood of the equilibrium. So, a semi-local
consideration is necessary to get a saturated neighborhood of the
equilibrium. This does not change the bifurcation set.
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Let us assume that linearizarion matrix for XH0 at p0 has two double
non semi-simple eigenvalues λ,−λ (their related Jordan boxes are
2-dimensional). Then the quadratic part of the Hamiltonian can be
reduced to the following Williamson normal form (Galin,
Burgoyne-Cushman, Kocak)

H(2)
0 = λ(x1y1 + x2y2) + x1y2, λ > 0.

A generic 1-parameter unfolding of this quadratic Hamiltonian can be
reduced (after some rescaling the parameter) to the following family

H(2)
ε = λ(ε)(x1y1 + x2y2) + x1y2 + εx2y1.

Supposing the Hamiltonian to be real analytic or C∞-smooth, one can
perform the local normalization procedure up to any desirable order.
Following the lines of (Sokol’sky, Meer, Chow) we come to the following
4th order normal form

Hε = λ(ε)(x1y1+x2y2)+x1y2+εx2y1+Ax2
2y2

1+Bx2y1(x1y1+x2y2)+C(x1y1+x2y2)
2+· · · ,

(3)
here A, B, C depend smoothly on ε.
Assumption 2. A(0) 6= 0.
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Then the equilibrium p0 is a degenerate saddle of XH0 , equilibria
pε, ε < 0, are focus-foci, and pε, ε > 0, are saddle-saddles (we follow
here the terminology of L-U for integrable systems). This implies, in
particular, that one can assume pε unmoved, pε = p (shifting
coordinates, if necessary) that is supposed later on.
In principle, the singular leaf of point p, i.e. joint connected leaf of two
integrals H, F can contain other singular points. To make the exposition
more transparent we assume below
Assumption 3. For any small ε a singular leaf Hε = 0, Fε = Fε(p) = 0
containing p is compact and has the only singular point p and does not
contain closed one-dimensional orbits.
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Let us consider first the local orbit structure of the corresponding
vector field and Poisson action near p for ε small enough. The local
structure of an integrable system is completely determined by its
normal form of any order, we restrict ourself by the normal form of the
fourth order (see (3) without dots) which captures all needed
properties of the system. As an additional local integral we take
Q = x1y1 + x2y2. Since p is of the saddle type for all ε small enough,
there are two smooth local mutually transverse Lagrangian disks
through p, namely its stable Ws : y1 = y2 = 0 and unstable
Wu : x1 = x2 = 0 manifolds. These manifolds belong to the singular leaf
containing p. But solutions of the system H = Q = 0 are not exhausted
with the points of stable and unstable disks, other solutions exist.
Other points lie on the graph defined by functions

y1 =
x2

1 − εx2
2

Ax3
2

, y2 = −x1(x2
1 − εx2

2)

Ax4
2

, (4)

if x2 6= 0.
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To understand the Liouville foliation structure near loops and its
reconstructions upon changing parameter ε, we choose, as was said,
two cross-sections Ns

+, Ns
− to ingoing parts of Γi and two others

Nu
+ : y1 = d, Nu

− : y1 = −d to outgoing parts of Γi. Every cross-section
is foliated by levels Hε = h into smooth two-dimensional curvilinear
rectangles given for Ns

+ and Ns
− by inequalities ||y|| ≤ d/2, |x1| ≤ δ with

(symplectic) coordinates (x1, y1) on them and for Nu
+ and Nu

− by
inequalities ||x|| ≤ d/2, |y2| ≤ δ with (symplectic) coordinates (x2, y2)
on them. Each rectangle is a graph defined by equations
Hε = h, x2 = d, or x2 = −d and similar for two other cross-sections.
The Liouville foliation is transverse to the cross-section, so it generates
a one-dimensional foliation on each rectangle, this foliation is given by
level lines of the restriction of the function Q on the rectangle (though
Q does not depend on ε but the rectangle itself depends on parameter
ε, therefore the foliation will depend on two parameters h, ε).
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In order to describe the structure of Liouville foliation within a
neighborhood of p, we need to understand how level lines generated
by function Q on a cross-section are transformed by XHε-flow when its
trajectories pass inside a neighborhood of p till they reach
cross-sections Nu

+ or Nu
−. The first question here is about traces of the

joint level Hε = Q = 0 where p lies. At ε = 0 the curve (??) intersects
the trace of Ws at only one point, therefore, since p is a saddle, through
its points other than (0, 0, 0) pass trajectories which stay in the
neighborhood of p only a finite time and then leave this neighborhood
(though the closer this point to (0, 0, 0) the longer a respective time is).
To be definite, we assume A > 0 in the following considerations.

Lemma
At ε = 0 and x1 6= 0 the curve (??) is mapped onto Nu

+ : y1 = d, and the
related curve from Ns

− with x1 6= 0 is mapped on Nu
− : y1 = −d. For

small positive ε the part of the curve with y1 > 0 is mapped to Nu
+ and

that with y1 < 0 is mapped to Nu
−. For ε small negative all the curve

with sufficiently small x1 is mapped onto Nu
+.
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Here we consider a one parameter integrable unfolding of an
integrable Hamiltonian system in 2 degrees of freedom that has a
singular point p with its linearization having one double non
semi-simple zero eigenvalue and a pair of real simple eigenvalues ±λ.
Near p the Hamiltonian at the critical value of the parameter (say,
ε = 0) can be written in some symplectic coordinates (x, y, u, v) in the
form (Galin)

H2 = λxy± v2/2 + · · · , Ω = dx ∧ dy + du ∧ dv,

here dots mean the terms of the order 3 and higher, λ can suppose to
be positive. Such Hamiltonian vector field XH has near p a local
smooth invariant symplectic 2-dimensional center manifold Wc (2-disk)
corresponding to the double zero eigenvalue. The restriction of XH

onto Wc is a one-degree-of-freedom Hamiltonian vector field with a
parabolic equilibrium at p, if some coefficient in the normal form of the
third order in the Hamiltonian does not vanish (its quadratic part is
±v2/2).
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All trajectories on Wc, except for the point p, are 1-dim orbits of the
induced Poisson action, the point p is 0-dim action orbit. Submanifold
Wc is a local hyperbolic submanifold of XH in the sense of
Hirsh-Pugh-Shub and Fenichel. The equilibrium p possesses also
strong stable Wss and strong unstable Wuu local manifolds being
smooth 1-dim curves through p, they correspond to eigenvalues ∓λ,
respectively. They also form 1-dim orbits (except for the point p) of the
Poisson action. But a local stable (unstable) set for p, that is the set of
all positive (negative) semi-trajectories which tend to p as t →∞
(t → −∞), are not exhausted by its strong stable (unstable) curves,
since parabolic point on Wc also has stable and unstable curves (each
of them is a local segment with p being its extreme point, their union
compose the curve like semi-cubic parabola with the cusp at p). The
following assertion is valid
Proposition. The set of all local semi-trajectories of XH tending to p as
t →∞ makes up the set Ws diffeomorphic to semi-disk on the plane
(x, y): x ≥ 0, x2 + y2 < 1. The same is true for the set Wu of all local
semi-trajectories of XH tending to p as t → −∞. These two sets locally
near p intersect each other at only point p (Fig.).
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For the integrable Hamiltonian vector field these sets Ws, Wu are locally
only the part of the solution set for the system H = H(p), F = F(p),
where F is the second smooth integral near p. This set is diffeomorphic
to the direct product of the set H = H(p) on Wc (semi-cubic parabola)
and the cross xy = 0 on the plane (x, y). Below we assume
Assumption 4. In the phase space a connected component of the
whole level set containing p given by the equations H = H(p), F = F(p)
is compact and has the only singular point p (0-dim orbit) of the related
Poisson action.
Locally near p there are exactly six 1-dim action orbits adjacent to p:
two of them belong to Wuu, two others do to Wss and two more do to
semi-cubic parabola. The local structure of the action near every of
these 1-dim orbits can be studied by means of the reduction procedure
described above. This leads to the following statement.
Proposition. For a point m on strong stable (unstable) curve the
reduction gives a 1 d.o.f. Hamiltonian system with a parabolic singular
point. For a point m on the stable (unstable) curve for p on the center
manifold (being 1-dim action orbits) the reduction gives a 1 d.o.f.
Hamiltonian system with a saddle singular point.
This proposition allows us to conclude that the local structure of the
solution set of the system H0 = F = 0 near a point on Wss or Wuu is
diffeomorphic to the direct product of the cuspoidal curve and a
segment. For the point on a separatrix (stable or unstable) of a
parabolic point on Wc the local structure of this set is diffeomorphic to
the direct product of a cross xy = 0 on the (x, y)-plane near the origin
and a segment.
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This proposition allows us to conclude that the local structure of the
solution set of the system H0 = F = 0 near a point on Wss or Wuu is
diffeomorphic to the direct product of the cuspoidal curve and a
segment. For the point on a separatrix (stable or unstable) of a
parabolic point on Wc the local structure of this set is diffeomorphic to
the direct product of a cross xy = 0 on the (x, y)-plane near the origin
and a segment.
Theorem. For a C∞-smooth Hamiltonian vector field in two degrees of
freedom with a singular point with two simple real eigenvalues ±λ and
double non semi-simple zero eigenvalue there is a smooth symplectic
coordinates (x, y, u, v) near p, Ω = dx ∧ dy + du ∧ dv, such that in these
coordinates the Hamiltonian takes the following finite order polynomial
normal form

H = λxy± v2/2 + P(xy, u) + · · · , Q = xy. (5)

where P(ξ, u) is a polynomial of some order and dots mean higher
order terms. The normalization can be carried out up to any given
order.
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In order to get the codimension 1 case, we impose the following
non-degenericity condition
Assumption 5. The coefficients a, b in P in front of terms xyu and u3,
respectively, do not vanish. In particular, this guarantees the singular
point on the center manifold x = y = 0 near p to be of the parabolic
type.
To obtain all conclusions about local structure it is sufficient to work
with the normal form of the third order: H3 = λxy± v2/2 + axyu + bu3,
a, b 6= 0.
Now we extend orbits out of a neighborhood of p. Let us make more
precise the structure of the set given by equations H = Q = 0 in a
small neighborhood of p. It consists of four 2-dim semi-disks Ws, Wu,
S1, S2 invariant w.r.t. XH-flow. These four semi-disks are divided into
two pairs: Ws, S1, and Wu, S2, two first ones have common boundary
segment Wss and two others have common segment Wuu. The
behavior of trajectories on S1, S2 are of a saddle type: S1 contains
boundary segment Wss and also the unstable separatrix of the
semi-cubic parabola, for S2 the boundary segment is Wuu and it also
contains the stable separatrix of the semi-cubic parabola.
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Semi-disks Ws, Wu, intersect at only point p, the same true for S1, S2,
but Ws and S2 intersect along stable separatrix of the semi-cubic
parabola, and Wu and S1 intersect along unstable separatrix of the
semi-cubic parabola. It is necessary to notice that each semi-disk of
four mentioned consists of two 2-dim action orbits, three 1-dim action
orbits (separatrices) and 0-dim orbit – the point p itself. Wuu can be
continued by XH-flow for all R due to compactness of the level
component of p and thus the boundary set of extended Wuu is a
singular point, that is p. Since we extend the orbit by the XH-flow, the
extended trajectory (one of two existing) from Wuu has to merge with
one of two trajectories in Wss (and not with trajectories from semi-cubic
parabola). It follows from the local structure of the set H = Q = 0 near
p. Thus we get a homoclinic orbit to p. The same is true, if we extend
the second trajectory in Wuu, so we get two homoclinic orbits γ1, γ2 to p
forming together a "figure eight". One more homoclinic orbit Γ is
formed, when one extends the unstable curve of the semi-cubic
parabola which has to merge under extending with the stable curve of
the same parabola. When extending them around Γ, we get a
symplectic annulus containing Γ whose other orbits are closed 1-dim
action orbits, simultaneously they are periodic trajectories of XH-flow.
In the whole phase space this annulus is a hyperbolic invariant
submanifold, periodic orbits on it are saddle ones.
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Bifurcations in a one-parameter unfolding

What can be said about the orbit structure within the levels H = c for
small positive |c|? As an unfolding of the degenerate system we
consider an integrable system which in local symplectic coordinates
(x, y, u, v) is of the form

H = εu + λxy± v2/2 + P(xy, u) + · · · , (6)

where coefficients in the polynomial P now depend on parameter ε.
The global part of the system depends smoothly on ε. The local
changes of the structure are displayed in the change of the structure
on the center submanifold. This submanifold stays to be hyperbolic in
the transverse directions.
The known bifurcations of this 1 d.o.f. Hamiltonian system are: 1) the
break of the parabolic point into center and saddle equilibria, two
separatrices (one stable and one unstable) of the saddle merge
forming one homoclinic loop for ε > 0 (to be definite), this homoclinic
loop is the boundary of a neighborhood of the center filled with periodic
orbits, and 2) disappearance of equilibria on the center manifold, all
local orbit stay on it a finite time estimated from below a quantity
depending on ε.
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In the whole phase space the equilibria appeared at positive ε on the
center manifold are saddle-center and a saddle-saddle. All periodic
orbits on the disk around the center on the center manifold become
saddle periodic orbits in the whole phase space. In fact, the former
symplectic annulus (the extension of the center manifold) stays to be a
symplectic annulus but now it contains a saddle with two homoclinic
orbits (figure "eight"), one is small enclosing p and another is big in a
neighborhood of former Γ. If Γ was orientable loop at ε = 0, then the
saddle appeared as ε > 0 will asquire four orientable loops (one is
small and three big ones around Γ, γ1, γ2). If Γ was non-orientable loop
at ε = 0, then the saddle appeared as ε > 0 will have three orientable
loops (around γ1, γ2 and one is small) and one non-orientable loop
around Γ. There are also two homoclinic loops for the saddle-center
appeared. They are elliptic 1-dim action orbits in the whole phase
space and they will be surrounded by two dimensional tori.
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What we need to add to the bifurcation pictures in order to describe
the extended (saturated) neighborhoods of periodic orbits of 3 d.o.f.
integrable system. It is, of course, a monodromies that can exist when
go around the periodic orbit. This allows one to catch main
peculiarities of the semi-global picture. One more thing that should be
taken into account is resonances for elliptic singular periodic orbits
which influence on the local picture when passing through this orbit.
The monodromies can be taken into account when studying families of
invariant tori.
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Landau-Lifshitz equation is a phenomenological model describing the
dynamics of magnetic media in the approximation of continual model.
It was derived by L.Landau and E.Lifshitz in 1935. This equation is one
of the basic models of the theory of magnetic media.

Lev Landau (1908-1968) Eugene Lifshitz (1915-1985)
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If we restrict ourself by the spatially 1-dimensional case (x ∈ R, plane
magnetic waves), it is written in the form

St = S× Sxx + S× JS,

here unitary 3-dim vector S(x, t) = (S1, S2, S3)(x, t), ||S|| = 1,
J = diag(J1, J2, J3), J1 < J2 < J3, describes nonlinear spin waves in a
ferromagnetics which move perpendicular to the anisotropy axis. This
equation is integrable by the inverse scattering method (Sklyanin).
Let us consider the system that describes the traveling wave solutions
of the LL equation. This means the solutions of the type
S(x, t) = m(x− ut), where u is a velocity of the traveling wave. The the
equations for the unitary vector m(ξ) takes the form

−um′ = u× u′′ + m× Jm.

If one introduces new coordinates M = um + m×m′, then the system is
transformed as follows

M′ + m× Jm = 0, m′ = M × m, m2 = 1, M · m = u. (7)
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Let us noting this system is equivalent to the well known in mechanics
system which describes the motion of a solid body around its center of
mass in a linear force field. At this case u has a sense of the area
constant. System (7) is well studied, in particular, their integrability in
the Prym theta functions was proved (Veselov, Bobenko). In papers by
Pogosyan and Kharlamov, and others bifurcation diagrams were
constructed and the topology of joint level of two integrals was studied.
System (7) is Hamiltonian, the related symplectic structure is given by
the Poisson bracket in the cotangent bundle T∗R3 ≈ R6 = {(M, m)}
which is defined by the skew-symmetric matrix

A =

(
L(M) L(m)
L(m) 0

)
, L(x) =

 0 x3 −x2
−x3 0 x1
x2 −x1 0


i.e. {F, G} = (A∇F, ∇G). This bracket is degenerate since two Casimir
functions exist: K = M · m and S = m2, i.e. {K, F} = {S, F} ≡ 0 for any
smooth function F(M, m)).
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Non degenerate symplectic structure generates by this bracket on
smooth 4-dimensional submanifolds N ⊂ T∗R3 defined by equations
K = u, S = 1. It is evident that N for any u is diffeomorphic to cotangent
bundle T∗S2. Hamiltonian of (7) is the function H = (M2 + m · Jm)/2.
System (7) has an additional Clebsch integral

Q = (M · JM − J1J2J3 · (m · J−1m))/2,

and these two integrals are independent on open dense subset in N.
Thus, system (7) is Liouville integrable.
It is worth noting the additional features of the system (7). It is
reversible w.r.t. involution σ : (M, m) → −(M, m), that is
XH(σx) = −XH(x), x = (M, m). At u = 0 there is one more reversible
involution τ : (M, m) → (−M, m). The set if fixed points Fix(σ) in N is
empty but Fix(τ) coincides with the sphere {(0, m)}. Parameter u can
be taken positive without a loss of generality.
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Levels Vh of Hamiltonian are described by the assertion.
Proposition.

Vh = ∅ as h < hc = (u2 + J1)/2, Vh = {C+, C−}, where
C± = ±(u, 0, 0; 1, 0, 0) at h = hc;
Vh is diffeomorphic to a disjoint union of two S3 as
hc < h < hR = (u2 + J2)/2, at h = hR two spheres touch each other
at two points R± = ±(0, u, 0; 0, 1, 0);,
Vh is diffeomorphic to S2 × S1 as hR < h < hp = (u2 + J3)/2, at
h = hp in Vh there are two self-tangency points
P± = ±(0, 0, u; 0, 0, 1);
Vh is diffeomorphic to T∗1 S2 = RP3 as h > hp, where T∗1 S2 is the
bundle of unit cotangent vectors, RP3 is the real 3-dimensional
projective space.
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Singular points of XH are classified. Due to reversibility of the systems
they consist of three pairs of symmetric points C±, R±, P±,.
Eigenvalues at these points are easily calculated:
1) C± : ±iω1,±iω2, |ω1| 6= |ω2|, ωi ∈ R (elliptic point);
2) R± : ±ω,±λ, ω, λ ∈ R, λω 6= 0 (saddle-center);
3) P± : ±λ1,±λ2, λi 6= 0; λ1, λ2 ∈ R1, |λ1| 6= |λ1| (saddle) as
0 ≤ u < u−, ±(α± iβ), αβ 6= 0, i =

√
−1, α, β ∈ R as u− < u < u+

(focus-focus), ±iν1, ;±iν2, ν1 · ν2 6= 0, ν1, ν2 ∈ R, |ν1| 6= |ν2| as u > u+,
here u± =

√
J3 − J1 ±

√
J3 − J2 .

For points saddle-saddle and focus-focus there are two local
two-dimensional stable and unstable manifolds Continuation of these
manifolds gives global stable and unstable manifolds. For
saddle-center points these manifolds also exist but they are
one-dimensional.
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From the physical applications of equation (7), important role play
orbits which belong to the intersection of stable and unstable manifolds
of different or the same singular points, that is hetero- or homoclinic
orbits. For the initial LL system they correspond to the traveling waves
of a soliton type. Physically, they are domain walls, that is sharp
boundary between domains of the different magnetization, so-called
domains. In the theory of LL equation such solutions are called
topological (for heteroclinic orbits, going to the different symmetric
equilibria) or nontopological (for homoclinic orbits) solitons.
When the magnetic energy is perturbed by the form of the fourth order
ν(m · J0m)m× J0m, J0 = diag (−1,−1, 0) in the first equation of (7),
separatrix surfaces are split and complicated set of solitons appear.
Here to find splitting a formula found by us (L.-Umanskiy) is applicable.
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As an example there all described exist is the well known in mechanics
system of the movement of the Kowalewski top in the two forces field
(Bogoyavlensky, Kharlamov, Reiman-Semenov-Tian-Shan’sky)

ω̇1 = (ω1ω2 + β3)/2, α̇1 = α2ω3 − α3ω2, β̇1 = β2ω3 − β3ω2,

ω̇2 = (−ω1ω3 − α3)/2, α̇2 = α3ω1 − α1ω3, β̇2 = β3ω1 − β1ω3,

ω̇3 = α2 − β1, α̇3 = α1ω2 − α2ω1, β̇3 = β1ω2 − β2ω1,

here ω is the vector of instant angular velocity, vectors α, β
characterize field forces, ||α||2 = a2, ||β||2 = b2, α · β = 0
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