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Introduction 
 The problem of falling motion of a body in fluid has a long history and was 

considered in a series of the classical [Maxwell 1854, Zhukovskii 1937, etc] and 

modern papers [Kozlov 1990, Kozlov, Borisov, Mamaev 2007, Shashikanth 2002, 

etc]. Some of the effects described in the papers, such as periodic rotation 

(tumbling), can be encountered only in viscous fluids and thus demand for their 
proper treatment the use of the Navier ï Stokes equations with boundary conditions 

specified on the bodyôs surface. 

  

 Another approach is to use (instead of the exact Navier ï Stokes 

equations) some phenomenological ODE models which capture the viscous effects 
only qualitatively. 

  

 The fluidôs viscosity imposes resistive forces on the body. These forces 

manifest themselves not only through the skin friction but they also serve a source 

of vortex generation. To evaluate a model which is a more or less realistic and at the 
same time amenable to analytical treatment it is customary to assume the liquid to 

be ideal and add the vorticity ad hoc meaning that we postulate the existence of, 

say, circulation, point vortices or vortex sheets etc. 

  

 As a first step to analytical approximation for the motion of rigid body in the 
liquid we can consider the same motions in a presence of point vortices. 



Setting up of the problem 
Oxy is a fixed coordinate frame 

is the radius-vector of the center of mass of the cylinder C 

is the velocity of the cylinder 

is the vector from the center of the cylinder to the i-th point vortex 

is the vector from the center of the cylinder to 

the i-th inverse point 

g is the intensity of gravity 
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iG is the i-th vortex strength 

G is the circulation around the cylinder 

R is the radius of the cylinder 



Governing equations 
Equations of motion for a cylinder and vortices with respect to a fixed 

coordinate frame (Sokolov, Ramodanov, 2013) 

(1) 

constant coefficient which involves added mass of the cylinder a

constants which connected with circulation around 

the cylinder and the i-th vortex strength in the fluid 

with the density 2p 



at the point  

part of the velocity potential  which does not have a singularity  



where       is the phase vector of the system, that is, 

H is the Hamiltonian function, and the components of the skew-symmetric tensor 

of the Poisson structure                                    satisfy the Jacobi identity: 

Hamiltonian form  
of the equations of motion 

Proposition.( Sokolov, 2014) The equations of motion (1) can be represented 

as follows: 

Proof. 

 It is straightforward to check that the system (1) has a constant of 

motion which can be interpreted as the energy integral 

(2) 



(4) 

Assuming H be the Hamiltonian of our system, we now choose the components  

for the equations of motion (2) to be identical with the equations (1). The non-zero 

tensor components read 

The check of the validity of the Jacoby identity for the components of (4) is a 

matter of straightforward computation. QED 

(3) 



First integrals and reduction 
Hamiltonian system (2) has (besides the Hamiltonian) (Sokolov 2014) two 

integrals of motion:  the autonomous integral ï horizontal components of the 

linear momentum 

 With the help of the autonomous integral (5) we reduced the 

number of degrees of freedom by 1 and thereby obtained, in a case N=1 a 

two-degrees-of-freedom Hamiltonian system which seems to be non-

integrable. 

  The system does not seem to have any additional constants of 
motion which is confirmed by chaotic behavior of solutions on the Poincaˇe 

section. A rigorous proof of nonitegrability of the system consisting of a body 

(with unequal added masses) with non-zero circulation around it falling in an 

ideal fluid is well known (Borisov, Mamaev 2006). 

and non-autonomous ï the vertical components of the linear momentum 

(5) 



 Using the autonomous integral P, one can reduce the original three-degree 

of freedom system to a system with two degrees of freedom. 

 To do this, put P = 0. It is clear that for ɚ = 0 (the case of ɚ = 0 will be 

addressed elsewhere) this can be always achieved by shifting the origin of the 

laboratory reference frame. Solving for      from the equation P = 0, substituting the 
result into the Hamiltonian (2) and excluding from (1)  the equation in       , we 

obtain the reduced system and corresponding Hamiltonian: 

which remains Hamiltonian with the Hamiltonian function 

and the bracket structure obtained from (4) by eliminating the rows and 

columns corresponding to       and        . 

(6) 



Integrable case g=0 
In a case g=0 system (1) has three functionally independent first integrals in 

involution: due to the translation symmetry:  two components of the linear 

momentum 

and due to the rotational symmetry: angular momentum 

The corresponding Hamiltonian flow is Liouville integrable. 

The decomposition of the phase manifold M2n into connected component of 

common level surfaces of this integrals looks like Liouville foliation. Every leaf of 

the Liouville foliation is an invariant surface. 

 

Unfortunately, system (1) presented in natural variables and complete investigation 
of the topology and geometry of the Liouville foliation not finished yet. 



Three types of motion 
There is a case where the vortex is captured by the cylinder. The trajectories 

start in a neighborhood of the origin. The red line is the trajectory of the center 

mass of the cylinder and the blue line is the trajectory of the vortex. 

The cylinder and captured vortex are moving 

horizontally. R=0.5, a=1, l=10, l1=0.1, g=10. 

xc=yc=0, v1=-1, v2=0, x1=0, y1=1. 

g 



The cylinder is not falling down and the 

vortex is not captured. R=0.5, a=10, 

l=25, l1=1, g=10. xc=yc=0, v1=v2=0, 

x1=2, y1=0. 

The cylinder is falling down vertically and 

the vortex is not captured. R=0.5, a=10, 

l=5, l1=5, g=10. xc=yc=0, v1=v2=0, 

x1=0.6, y1=0. 

There are two  cases when the vortex is ñleft behindò  the cylinder. The 

trajectories start in a neighborhood of the origin. The red line is the trajectory of 

the center mass of the cylinder and the blue line is the trajectory of the vortex. 

g 
g 



 So we hypothesize (but cannot prove it) that in the course of motion the 

cylinder is always confined to a horizontal strip, except, maybe, for the case ɚ = ɚ1.  

  

 If the cylinder falls down without bound (the function yc(t)) tends to īÐ) 

the vortex cannot be captured with the cylinder. 



Relative equlibria and their stability 

 To find (Sokolov, Ramodanov 2013) the equilibria we equate the 

right-hand sides of (6) to zero and thereby immediately obtain velocity of the 

cylinder and equation for vortex coordinates 

 The stationary solutions of the reduced system are the relative equilibria 

for the original system.  

Here the following notation is used 

 Physically, it is clear that for a cylinder to move with a constant speed the 

external forces applied to it must sum up to zero: the gravity must be compensated 

with the lift, which is due to the circulation. The vortex placed at the stagnation point 

C (next Figure) (at this point the velocity of the fluid particle relative to the cylinder 

is zero) does not move relative to the cylinder and therefore neither does its image. 
In this case the vortex exerts no force on the cylinder and therefore cannot prevent 

the cylinder from moving rectilinearly. The stream lines for this equilibrium case are 

depicted in next Figure. 



Cylinder and vortex in the 

state of relative equilibrium 

Equilibrium position  1
y of the vortex depending on 

the parameters 1,l l : 1 ð unstable equilibria 

(ind = 1), 2 ð unstable equilibria,   

3 ð stable equilibria of the center-center type 

(ind = 2), 4 ð unstable equilibria of the 

focus-focus type (ind = 2), 5 ð resonance 

curves. 



 For the stability analysis of the equilibria found we will use the methods and 

approaches developed in (Bolsinov 2012). It is well known that to investigate the 

stability of an equilibrium solution of a Hamiltonian system the two invariant 

characteristics of such a solution must be obtained: 

1. the index of the quadratic form i.e. the index of the symmetric (4 Ĭ 4)-matrix 

which can vary from 0 to 4; 

2. the type of the equilibrium solution depending on the eigenvalues of the 

linearized vector field i. e. the eigenvalues of the symplectic (4 Ĭ 4)-matrix 

This type can be one of the following: centerïcenter, 

saddleïcenter, saddleïsaddle, focusïfocus. 

 Like in (Bolsinov 2012), we mark off the eigenvalues of the linearized 

vector field, which are the roots of the characteristic polynomial 

on the plane (a, b) of the polynomial coefficients. In Fig. 5a from [1], one can see 

stable and unstable regions, the index of the form              , and the types of the 

equilibrium solutions. 



(a) Stable and unstable 

regions in the (a, b) plane of 

the characteristic polynomial 

coefficients. The third- and 

fourth-order resonance 
curves are shown. 

 

(b) The relative equilibrium 

position of the vortex versus 

the parameters  1,l l

(c) The Hill domain for the 

three-equilibrium case. (d) 

The Hill domain for the 

single equilibrium case. 



Poincare cross-sections 
 It is known that a system with insufficient number of conserved quantities 

(first integrals) is usually characterized with chaotic behavior of its trajectories. 

A strict proof of the property of non-integrability usually involves highly non-trivial 

mathematical argumentation. On the other hand, the chaotic dynamics of the 

systemôs solutions (that can be easily revealed via simulations) indicates the lack of 
first integrals. 

 

 Let us apply this line of reasoning to the system of equations (6), which is 

a Hamiltonian system with two degrees of freedom. To better understand its 

dynamics we plot a few Poincaˇe sections.  
 

 In next Figure points of the phase plane which lie outside the region of 

allowable motion are shown with grey shading. We can see areas of regular 

dynamics which appear as intersection of the energy level surface and invariant 

tori. A stochastic layer is presented in the area surrounding second order tori. The 
appearance of this layer is a striking illustration of chaotic behavior of our system. 



 PoincarȰe section of the reduced cylinder-vortex system for Hc Ґ ҍмтΤ ǘƘŜ ǎȅǎǘŜƳ ŜȄƘƛōƛǘǎ 
chaotic behavior. 



 PoincarȰŜ ǎŜŎǘƛƻƴ ƻƴ ǘƘŜ ŜƴŜǊƎȅ ƭŜǾŜƭ IŎ Ґ ҍмт ƻŦ ǘƘŜ ǊŜŘǳŎŜŘ ŎȅƭƛƴŘŜǊ-vortex system 

 (the other parameter values are as those in previous figure ). The small square marker 
indicates the position of the hyperbolic fixed point. 



Circulation  0l=
(Sokolov, Koltsov 2015) 



Scattering function 

(Bolsinov, 

Taimanov) 



2D Scattering function 



Scattering function features 



 

Thanks  for your attention! 


